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AbstracL By computing A n d m  scattering coefficients for a three-dimensional disordered 
solid containing superconducting inclusions and evaluating a generalized Landauer- 
BBttiker formula for the two-probe eleclrical conductance G, an intuitive result is 
obtained for the dependence of G on the phase of the superconductors. For the simplest 
case of WO inclusions, it is shown that G varies periodically with the phase difference q5 
of the superconducting islands, with period 2rr. For more than WO inclusions, beating 
can occur. If the superconductors are decoupled, G varies periodically with time, at 
the Josephson frequency. If the superconductors are weakly coupled, this behaviour 
is preceded by a time-independent regime in which 4 increases with the externally 
applied voltage, while G changes non-monotonically. I1 is demonstrated thal at least in 
the presence of single-channel external leads, the ensemble averaged conductance of a 
highly disordered sptem varies periodically wilh period 2r,  in contrast with a periodicity 
of T found for weakly localized systems. 

1. Introduction 

When a chemical potential difference 6p exists between two superconductors, the 
phase difference 4 = +, - +* changes with time according to the Josephson relation 
d+/dt = 2 6p /h .  If the Josephson coupling and associated critical current I ,  are 
non-zero, then a range of well known effects associated with superconducting weak 
links can occur, the precise nature of which depends not only on the geometry of 
the junction, but also on whether or not the system behaves mesoscopically [I-31. 
All of these effects vanish when I ,  is negligibly small and the coupling between the 
superconductors tends to zero. Therefore in this limit, one might expect no interesting 
physics to be associated with the phase of the superconductors. One exception to 
this arises in mesoscopic structures, where Andrew scattering of normal electrons 
provides an extra mechanism for interference from order parameter phases. For 
a normal disordered material located between two superconducting boundaries, it 
has been demonstrated [4,5], that a weak localization contribution to the electrical 
conductance G and the ensemble averaged conductance (G) are oscillating functions 
of 4, with period 2a and A respectively. 

For the weakly disordered system examined in [4,5], electrical conductance 
is dominated by quasi-particle diffusion, with negligible current carried by the 
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superconducting condensate. The aim of this paper is to examine the opposite limit 
of negligible quasi-particle diffusion, where electrical conductance is dominated by 
Andreev scattering at superconducting-normal interfaces. To this end, a mesoscopic 
system containing an arbitrary number of superconducting islands is examined and 
an intuitive picture developed, which reveals in a transparent manner how oscillatory 
behaviour arises. For normal systems, a gea t  deal of insight into transport properties 
has been achieved using an equivalent approach to Green function methods, based 
on Landauer-Biittiker formulae [a]. In what follows, it is demonstrated that by 
generalizing the two-probe Buttiker formula [SI to account for Andreev scattering, 
simple perturbation theory can be used to compute the effect on G of quantum 
interference from the phase of an arbitrary number of superconducting inclusions. 
For the simplest case of two inclusions, examples of which are given in figure 1, the 
oscillatory behaviour of G with period 2n is recovered. However, at least for the 
case of single-channel external leads, at zero temperature, (G) is found to oscillate 
with period 2 ~ ,  rather than T. 

L 

( 6 )  
Figure 1. Possible configurations of weakly coupled superanducton (shown shaded) 
embedded in a normal mesoscopic medium. (a) Ik.0 
superconductors embedded in the arms of a normal mmoscopic loop. 

( a )  A generic example. 

The origin of such oscillatory effects lies in the fact that by definition, for a 
mesoscopic structure, the sample size is smaller than, or of the order of, any inelastic 
scattering length and therefore an excitation maintains phase coherence as it passes 
through the system. In the presence of a superconducting inclusion with a constant 
order parameter of phase dj, as well as normal potential scattering, a particle-like 
wavepacket can coherently evolve into a hole-like excitation and vice versa. This 
process, known as Andreev scattering, produces a phase shift of 4j in the outgoing 
wavepacket. Consequently one expects quite generally that in the presence of more 
than one inclusion with differing order parameter phases, a variety of new quantum 
interference effects will arise. 

In the simplest case of two inclusions with phases 4,, 42, in the strong disorder 
limit, it is shown below that 
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(1.1) G = 2[A: + A: + 2A,A2  cos(4 + 6',,)1 
where the amplitudes A,, A, and the phase depend on the size of the inclusions 
and on details of the quasi-particle diffraction pattern within the sample. This effect 
has not yet been observed experimentally and before proceeding, it is of interest to 
ask how it can be distinguished from the AC Josephson effect. Consider a current 
flowing from right to left, due to a potential difference p,  - p, applied across either 
of the samples in figure 1. If the Josephson coupling between the islands is negligibly 
small, then except in the extreme case of a symmetric structure with the current 
flowing at 90" to a line joining the islands, this will produce a potential difference 6p 
between the superconductors and therefore 4 will increase with time at the Josephson 
frequency 2 6p/li. Consequently the current through the sample will possess an 
oscillatory component. However, in contrast to the AC Josephson effect, where the 
oscillating current is bounded by a voltage-independent critical current IC, the current 
here is G(4)(pl - p,) and therefore the amplitude as well as the frequency of the 
oscillatory component increases with applied voltage. 

IIb derive the above result, it is important to realize that the current-voltage 
relations, which underpin Landauer-Biittiker formulae [64] for the electrical 
conductance of normal mesoscopic structures, must be generalized [9] in the presence 
of superconductivity. IIb achieve this generalization [9], two new features were added 
to the conventional theory [a]. First, current-voltage relations were extended to 
include Andreev scattering [lo]. Second, for a single superconducting inclusion, 
to ensure quasi-particle charge conservation at equilibrium, the chemical potential 
p of the superconductor was determined self-consistently. For a collection of 
superconductors with a spread 6p of potentials centred on p, the result remains 
valid, provided 6p < [p ,  - p21, where p, ,  p, are chemical potentials of external 
reservoirs supplying the current I flowing through the device. 

In [9] generalized four-probe Landauer formulae were obtained at both zero and 
finite temperature. The simpler two-probe formulae were not written down explicitly, 
but are implicit in the analysis. Since the latter are more accessible experimentally, the 
analysis in this paper will focus on the two-probe conductance G = e I / ( p , - p , )  and, 
for simplicity, will be restricted to zero temperature. All reflection and transmission 
coefficients will be evaluated at energy E = 0 (relative to the chemical potential 
p), where particle-hole symmetry can be exploited. At this energy, taking into 
account unitarity of the S-matrix and quasi-particle probability conservation, the only 
distinct coefficients are [S] R,, R, (Rh, Rb) and To,", (Ti,  TL), corresponding to 
normal and Andreev reflection of quasi-particles from the left (right) reservoir and 
normal and Andreev transmission from the left (right) respectively. These satisfy 
R, + R, t T, + T, = R; + R; + T; + Ti = 1 and Tu + Ta = T; + Ti and yield 
for the two-probe conductance G, in units of h/2e2 ,  

G = TO + T, + 2[R,Rh - T,TL]/[R, t Rh + T, + T;]. (1.2) 

In the case of a highly disordered sample, with negligible transmission, this reduces 
to 

which is the appropriate form when Andreev scattering short4rcuits normal 
conduction. These expressions are not restricted to one dimension. For d > 1, 
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coefficients are obtained by summing over N channels corresponding to different 
transverse k-vectors in the normal leads 191. For example if (R,)j,j  is the Andrcev 
reflection coefficient from channel j on the left into channel i on the left, then 

N 

The possibility of new dynamical effects arises because, as demonstrated below, 
reflection and transmission coefficients vary periodically with the phase difference 4. 
’lb observe this periodicity, the usual criteria for mesoscopic behaviour must apply. 
At a temperature T, these are Lime, > L and kBTtL/fi < 1, where L , ,  is the 
inelastic scattering length and tL  is the average time spent by a quasi-particle within 
the device, as it passes from one external lead to the other. If D is the diffusion 
constant, then tL = L 2 / D  = h / E , ,  where E, is the Thouless energy. 

In the linear response regime of the normal system, these are supplemented 
by the condition lpl - p21tL/fi  < 1. In addition to these standard criteria, the 
potential difference 6p between the superconductors must be small enough that 
inelastic Andreev scattering from superconductors at different potentials can be 
ignored and that the change in 4 during a time tL  is much less than 277. The 
latter condition ensures that transport coefficients depend only parametrically on 4 
and yields Zip t , /h < 1. The former arises because, if p is identitied with the 
chemical potential of one superconductor, Andreev scattering from the other involves 
a quasi-particle energy change of magnitude 6p. In a time t,, a quasi-particle 
undergoes of the order of t,/t, such events, where for superconductors separated 
by a distance a, t, = a Z / D  and therefore a spread in quasi-particle energy of the 
order of 6E = 6p ( t L / t , ) Z  is produced. If this is not to de-phase the quasi-particles, 
the condition 6E t L / h  < 1 must be satisfied. For L / a  > 1, this is more stringent 
than the condition for parametric dependence on 4 and in the h e a r  response regime 
is satisfied when Sp ( L / a ) *  < IpL1 - p21. This can occur when a line joining the 
superconducting inclusions is approximately at 90° to a line joining the external 
probes, as shown in figure 1, and therefore such devices might be termed ‘transverse 
quantum interference devices’, or perhaps ‘inverse SQUIDS’. 

2. Golden rules for Andreev scattering 

For a highly disordered sample, to evaluate the right-hand side of equation (1.3), 
consider first the normal disordered solid, obtained by setting the superconducting 
order parameter A(r) to zero. In this limit, if the scattering region extends from 
I = 0 to I = L, then for I < 0 the state @j,j ,E(~)  corresponding to a unit incident 
flux of particles of energy E, from left to right in channel j ,  is of the form 

In this expression, if V . , ~ ( E )  ( v , , ~ ( E ) )  is the group velocity for particles (holes) 
of energy E in channef 3, an incoming plane wave of unit flux along channel j is 
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obtained by choosing A,,, = 8i,J(v,,p( E ) ) - l l 2  and for the case of rectangular leads 
of cross section M 2  = d,d,, 

&(y, z )  = ( 2 / M )  sin(n17ru/d,) sin(n;rz/d2). 

If +,,,(r) is represented by a 2N-component column vector I+,) formed from 
the coefficients { A i , , B , J } ,  then for x > L, qhJIE(r) corresponds to the vector 
I+;) = TI+)), where ? is the transfer matrix of the normal system [ I l l .  For 
0 < x < L, + j , E ( ~ )  is obtained by solving the Schradinger equation subject to 
the boundary condition (21). 

'lb lowest order in A(r), for an incident particle of energy E incident from the 
left, the coefficients R,, T, can now be evaluated from the following Golden Rules 
for Andreev scattering, 

where all spatial integrals extend only over the scattering region 0 < I < L and in the 
last expression ~ $ ~ , - ~ ( r )  is the state corresponding to a unit incident particle flux of 
energy -E from the right. Expressions for Rh and 7': are obtained by interchanging + and + in these equations. These expressions are useful, because they allow one to 
extract information about transport properties of the system with inclusions, from a 
knowledge of the scattering properties of the normal embedding material. 

Before evaluating these expressions, a derivation of exact results for transmission 
and reflection coeIlicients will be given; these reduce to equations (2.2) and (2.3) in 
lowest order. 'lb this end it is convenient to write the Bogoliubov-de Gennes equation 
in the form 

where Ho describes the normal disordered system in the absence of superconductivity 
and HI describes scattering due to the superconducting order parameter: 

H"(T)  = ( H p  

and 

0 
= ( 

Starting from the eigenstates 

Ai;') .  
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of the normal disordered system described by a,,, the solution to equation (24), 
corresponding to an incoming particle from the right, along channel j, is 

where the diagonal matrix C*(r,r', E) is of the form 

and satisfies 

(El  - H"(v))G*(r,r', E )  = h 6(r - T ' )  
( l  O )  

with superscripts + (-) denoting outgoing (incoming) solutions. Iterating equation 
(2.6) yields the equivalent expression 

(2.8) 

where 

T*(T' ,T") = Fl1(r')6(~' - r") + ti-' d3r"' H , ( T ' ) G * ( V ' , ~ " ' ,  E ) T * ( ~ " ' , r " ) ( 2 . 9 )  

To obtain Andreev scattering coefficients, one notes that for I < 0 or z > L,  
where 4 j , E ( ~ )  is a sum of outgoing plane waves, the amplitude of this scattered hole 
state in channel i is 

I 

di j , z ( z )  = 1 dY d r  & ( Y > Z ) ~ ~ , . E ( T ) .  

Hence 

( J L ) i , j  = .i,a(E)ldij,E(o)l* (2.10) 

(%,j = .i,h(E)ldij,€(L)I*. (2.11) 

and 

Similarly to obtain normal scattering coefficients, one notes that for I < 0 or z > L, 
the amplitude of the scattered particle state in channel i is 



where in the last expression, +;,E(~) = ( U ~ ~ ( E ) ) - ~ / ~  exp ik j ( r )  is the longitudinal 
component of the incoming plane wave along channel j and has been subtracted 
from q i j , F ( ~ )  to yield the outgoing component for z < 0. 

Equations (210) to (2.13) are exact results and form a convenient starting point 
for developing diagrammatic expansions for R, and T,. They are analogues of a 
formula by Fisher and Lee [12] for transmission in normal disordered systems. 

The lowest order, equations (2.2) and (2.3) are obtained by retaining only the 
first term on the right-hand side of equation (29) and noting that G i ( r , r ' , E )  = 
[G:(T',T,-E)]*. This yields 

&j ,E(z )  = h-' d3d [G,C,;(T',~,-E)]*A*(T')+~,~(T') (214) 

where 

GXj( r ' , z ,E)  = dz dy ii(y, z)G:(r ' ,r ,  E). J 
Equation (22) follows from the fact that apart from an irrelevant phase factor, for 
z < 0 and I' > 0, 

GLi(r', z, - E )  = (~jp(-~))-'/zlLi,E(r') 

and that vib( E) = v ip( -E) .  Similarly equation (2.3) follows from the fact that apart 
from a phase factor, for z 2 L and I' < L, 

q , i ( ~ ' ,  I, -E) = ( ~ j P ( - ~ ) ) - " ' 4 i , - ~ ( r ' ) .  

Equation (22) shows in a transparent manner the origin of periodic dependence 
of R, on the phase difference between superconducting inclusions. Tb see this, 
consider the simplest case of narrow external leads with only a single zero-energy 
channel. At zero temperature, where only the E = 0 limit is of interest, equation 
(2.2) yields 

2 

R, = ( ~ ~ ) i , i  = Ih- lJ  d3r t+i,o(r)/zA*(r)l . (2.15) 

If A ( r )  = A exp(i6,) for the region RI  occupied by superconductor 1 and 
A ( r )  = A exp(i4,) for the region 0, occupied by superconductor 2, then one 
immediately obtains 

R, = IA, exp(i4,) + A, exp( i6J2  (2.16) 
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where 

Ai = Ah-’ l, d3r lK,o(r)12. (2.17) 

A similar result is obtained for Rh and for the case where R, Q R;, since A, and A, 
are positive, one recoven equation (l.l), with ell = 0. Whatever the relative values 
of R,, Rh, this demonmates that G is periodic with period 2a. Equation (2.15) 
also illustrates that, whereas the values of A; depend on the particular realization of 
the disorder, particle-hole symmetry at E = 0, which leads to a positive integrand 
in equation (2.16), produces a phase el, = 0, which is independent of microscopic 
disorder. Hence the ensemble averaged conductance is periodic with period 2a, in 
contrast with the weak localization result of [4,5]. Thus a periodicity of ?r is not a 
general property of the ensemble averaged conductance. 

3. Evaluation of Andreev scattering coefficients in the presence of many channels 

For leads with many channels, to obtain an expression for 

Ra = “ , j  
i ,j 

in the highly disordered limit, a transformation to eigenstates { I f j ) }  of i t ?  is 
appropriate [ll]. The corresponding eigenvalues are of the form A, = exp(-a,L), 
where for 1 < m < N, the exponents {a,} are positive and for N + 1 4 m 4 2 N ,  
a, = -a,-N. If the associated real space functions f j ( r )  are written f j ( r )  = 
gj(r)exp(-ajz) then the non-unitary transformation takes the form 

where um,j = (f,llLj). Since only the limit E = 0 is of interest here, the 
subscript E has been omitted. The fact that eigenchannels of ftf are associated 
with exponentially decaying eigenvalues leads to great simplifications in the strong 
disorder limit. For example, when I > L,  /$(.)la - Tu - exp(-2a,L), where al 
is the smallest positive exponent Therefore the coefficients u,,~ for m > N are of 
order exp(-al - la,l) and can be ignored. The transformed expression for R, then 
becomes 

where 
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In the case of N ,  spatially separate superconductors, where in the region occupied by 
superconductor s the order parameter has the form A(r)  = A exp i+s, the integrals 
I-,- take the form of a sum of interfering contributions from each superconducting 
inclusion 

(3.3) 

If as in figure l(u), superconductor s. occupies a region of space of volume .52(') 
between z = L,  and z = L ,  + I,, then 

2 -1 - 8 )  (3.4) Ik!n = (fiuFM ) A.52,,,exp[-(am + Q , ) L ,  + i(4s + Ok!")]. 
where uF is the Fermi velocity and 

(3.5) a:, = 8 )  X m + P  (3) - exp[-(., + %)L}/{(am + a&}. 

In this expression the value of both the real, dimensionles number x$& and the 
phase e:!,, depend on the detailed form of the eigenstates gn(T), g , ( r )  and on the 
precise shape of the superconductor s. 

Equations (3.2) to (3.4) clearly demonstrate that interference from N, > 1 
superconductors leads to an oscillatory contribution to quasi-particle transport 
coefficients. Again in the high disorder limit, where the spacing (a2 - a,) is greater 
than 1/L, gross simplifications arise, because the right-hand side of equation (3.2) is 
dominated by the smallest term and for N ,  = 2 reduces to 

R, = Af + A: + 2AtA2 cos(+ + ell) (3.6) 

where A, = [ I (" ) [  and Om, = &!n - e:!,. For weaker disorder, where the 
number N, of etgenchannels contributing significantly to R, is greater than unity, 
the phase average of R, grows linearly with N , ,  whereas if the random phases 
Om, are uncorrelated, the prefactor of the oscillatory term will increase as N;". 
Therefore the effect is present even in the many-channel case, although the relative 
amplitude of oscillation is diminished. It is interesting to note that in the strong 
disorder limit, the probability distribution of the amplitudes A, will possess a long 
tail, reflecting the log-normal distribution of exp{al,} [12]. Hence the relative size 
of the oscillatory term will exhibit large fluctuations amongst members of the Same 
statistical ensemble and for a given sample the sum 1/R, + 1/Rh will be dominated 
by the smallest of R,, Rh. It should be noted that since the expression (2.3) for T, 
involves a product of states which decay from the left and right respectively, 

T, - To - exp[-2al(l - 2L,)] - exp[-2alI,] 

s t  

Consequently for inclusions of size I, > al, the reduced formula (2.2) can he 
employed, to yield G Y 2( R,),,,, where (R,),, is the smaller of R,, Rk. 
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4. Discussion 

When the phases are decoupled, the oscillatory behaviour in equation (3.6) bears 
a resemblance to the AC Josephson effect, but differs from it in several respects. 
For example as noted above, the periodicity here is in the conductance G and 
therefore the amplitude as well as the frequency of current oscillations will increase 
with applied voltage. In addition, as is evident from equations (3.3) and (3.4), the 
effect is not restricted to two superconducting inclusions, and therefore for more than 
two inclusions, to facilitate observation of this phenomenon, it should be possible to 
produce low-frequency beats between higher-frequency oscillations associated with 
different pairs of superconductors. Furthermore, there may be one or two orders of 
magnitude difference between the superconducting transition temperature at which 
Josephson effects can occur and the temperature at which mesoscopic effects become 
observable. If a small couphg exists between two superconducting inclusions, then 
as the external potential difference p1 - p2 is increased, the above time-dependent 
behaviour will be preceded by a time-independent regime. For small pl - p2, the 
inclusions will remain coherently coupled, with a time-independent phase difference 
4 associated with a small, sub-critical supercurrent flowing from one inclusion to the 
other. In this regime, depending on the value of the random phase in equation 
(lo), G may vary non-monotonically with pl - p2 and as 4 increases from 0 to T 

may therefore exhibit negative differential resistance. 
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